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Abstract

A fairly general theoretical model for pulsed arterial spin labeling perfusion methods has been available for some time but

analytical solutions were derived for only a small number of arterial blood input functions. These mostly assumed a sudden and

simultaneous arrival of the tagged blood into the imaged region. More general cases had to be handled numerically. We present

analytical solutions for two more realistic arterial input functions. They both allow the arrival times of the molecules of tagged

arterial blood to be statistically distributed. We consider cases of (1) a uniform distribution on a finite time interval and (2) a normal

distribution characterized by its mean and standard deviation. These models are physiologically meaningful because the statistical

nature of the arrival times reflects the distribution of velocities and path lengths that the blood water molecules undertake from the

tagging region to the imaged region. The model parameters can be estimated from the measured dependency of the perfusion signal

on the tag inversion time.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The Pulsed Arterial Spin Labeling (PASL) perfusion
methods such as EPISTAR [1] (standing for Echo-Pla-

nar Imaging and Signal Targeting with Alternating

Radiofrequency), FAIR [2,3] (Flow-sensitive Alternat-

ing Inversion Recovery), UNFAIR [4,5] (UN-inverted

FAIR), PICORE [6] (Proximal Inversion with Control

for Off-Resonance Effects), TILT [7] (Transfer Insensi-

tive Labeling Technique), or QUIPSS II [8] (QUantita-

tive Imaging of Perfusion using a Single Subtraction)
provide a non-invasive means to assess the human ce-

rebral blood perfusion without the need for excessive

RF power or special RF coil design. They can thus be

easily implemented on common clinical systems.

The PASL results are often presented in terms of a

difference between the flow-weighted and control im-

ages. More quantitative assessment of the perfusion re-

quires a mathematical model, usually originating from a
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modified version of the Bloch equations [9] that takes

into account the incoming and outgoing spins carried by

blood flow. Typically, an instant and uniform arrival of
the tagged blood has been assumed [2,10]. For multi-

slice imaging, the effect of a delayed arrival of the tagged

spins into the imaging slice has been considered [11]. A

very general model for perfusion imaging has been de-

veloped by Buxton et al. [12], who incorporated an ar-

bitrarily shaped arterial input function. They also

included analytical solutions for several simple cases.

More general examples were handled numerically.
Here we present analytical solutions for two more

general cases of the arterial blood input function. The

wavefront of the arriving tagged blood is no longer as-

sumed to form a sharp-edged step function. Instead, we

account for the statistical nature of the arrival times,

thus accommodating the physiological variability of the

blood velocities and path lengths. This approach leads

to smoothing of the tagged blood wavefront, the exact
shape of which depends on the statistical distribution

used. We consider two cases that are simple enough to

be solved analytically, a uniform distribution and a

normal distribution.
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If the RF tagging of the arterial blood has a limited
spatial extent as is usual, e.g., for common transmit/re-

ceive head coils, the arterial input function is truncated.

Neglecting this effect can lead to considerable errors,

especially for longer mixing times [13]. Similar dissipa-

tion and smoothing then applies to the trailing edge of

the tagged blood except that the effect is larger due to

larger distances and arrival times involved.
2. Theory

The PASL techniques typically acquire two images
which correspond to the flow-weighted magnetization

MF (when the arterial blood is tagged by an RF pulse),

and the control magnetization MC (with no tagging). A

modified Bloch equation for MF in an imaged voxel is

dMFðtÞ
dt

¼ M0 �MFðtÞ
T1

þ fMaFðtÞ �
f
k
MFðtÞ; MFð0Þ ¼ 0;

ð1Þ
where M0 is the equilibrium magnetization, MaFðtÞ is the
tagged arterial input magnetization, T1 is the tissue spin–
lattice relaxation constant, f is the perfusion flow in s�1,

and k is the blood/tissue water partition coefficient [9].

A similar equation for the control magnetization MC

is

dMCðtÞ
dt

¼ M0 �MCðtÞ
T1

þ fMaCðtÞ �
f
k
MCðtÞ; MCð0Þ ¼ 0:

ð2Þ
Rather than solving directly Eqs. (1) and (2), it is

convenient to consider a differential equation for the

difference intensity DðtÞ ¼ MFðtÞ �MCðtÞ which can be

written as

dDðtÞ
dt

þ DðtÞ
T1app

¼ DaðtÞ; Dð0Þ ¼ 0; ð3Þ

where

1

T1app
¼ 1

T1
þ f

k
and DaðtÞ ¼ f ½MaFðtÞ �MaCðtÞ�:

If spin tagging is achieved by an inversion pulse and

the repetition time is sufficiently longer than the longi-

tudinal relaxation times of blood and tissue, the right

side of Eq. (3) can be expressed as

DaðtÞ ¼ 2M0

f
k
exp

�
� t
T1b

�
W ðtÞ; ð4Þ

where T1b is the relaxation constant of blood, and W ðtÞ
describes the arterial blood input function (which can

also incorporate inversion pulse imperfections). The
numerical factor of 2 would disappear if the tagging was

achieved by a saturation pulse instead of inversion. This

model can be applied to all PASL techniques mentioned

in Section 1.
Various approximations, e.g., T1app � T1 or even
T1app � T1 � T1b, have been made in various PASL

models, leading to a range of solutions for the DðtÞ
signal. The largest source of variability, however, stems

from the arterial blood input function W ðtÞ that de-

scribes the time course of the tag proportion among all

the blood arriving to the imaged voxel. It ranges from

0 to 1.

The general solution of Eq. (3) can be expressed,
thanks to its simple initial condition, as a convolution of

the right-hand side DaðtÞ with kernel DdðtÞ which satis-

fies Eq. (3) with Dirac delta function on the right-hand

side (DaðtÞ ¼ dðtÞ):
DðtÞ ¼ DaðtÞ � DdðtÞ

¼
Z 1

0

Daðt � t0Þ exp
�
� t0

T1app

�
dt0; ð5Þ

where

DdðtÞ ¼
0 for t < 0 and

exp � t
T1app

� �
for tP 0:

�

2.1. Boxcar input function

If the dissipation of the tagged region edges is ne-

glected, the input function becomes simply

W ðtÞ ¼ a for s1 6 t6 s2 and

0 elsewhere:

�
ð6Þ

The parameters s1 and s2 denote the arrival time of

the leading and trailing edge of the tagged blood, re-

spectively, and a is the inversion efficiency (0 < a < 1).

The implicit assumption is that the tagged blood moves

as a rectangular block into the imaging slice.
Substitution of W ðtÞ into Eq. (4) and subsequent in-

tegration in Eq. (5) leads to the solution

DðtÞ ¼
0 for t< s1;
F
R ðexpðRtÞ� expðRs1ÞÞ for s16 t6s2; and
F
R ðexpðRs2Þ� expðRs1ÞÞ for s2 < t;

8<
:

ð7Þ
where

R ¼ 1

T1app
� 1

T1b
and F ¼ 2aM0

f
k
exp

�
� t
T1app

�
:

This solution is termed a ‘‘standard model’’ in [12] (their

Eq. (3)).
2.2. Uniform dissipation of input function

The tagged blood water molecules proceed to the

imaging slice along pathways of varying lengths and

at different speeds. This inherent randomness has a

consequence of smoothing the edges of the input

function.
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As the simplest possible approximation, we assume
that a tag concentrated at a single point source would

dissipate into a homogeneously filled sphere with radius

r. Because the leading edge of the tagged region is

originally formed by a plane parallel with the imaging

slice, the dissipation is equivalent to a 1D convolution of

the Heaviside step function with a boxcar of width 2r.
When considering separately the leading and the trailing

edges of the standard model described in the previous
paragraph, the dissipative smoothing results in a trape-

zoid input function

W ðtÞ ¼

0 for t < s�1 ;
a
2
þ a

2r1
ðt � s1Þ

for s�1 6 t < sþ1 ;
a for sþ1 6 t < s�2 ;

a
2
� a

2r2
ðt � s2Þ

for s�2 6 t < sþ2 ; and

0 for sþ2 6 t;

8>>>><
>>>>:

ð8Þ

where

s�1 ¼ s1 � r1; sþ1 ¼ s1 þ r1; s�2 ¼ s2 � r2;

sþ2 ¼ s2 þ r2:

The trailing edge will generally be more dissipated

due to its larger distance from the imaging slice. How-

ever, we assume for the sake of simplicity that the

characteristic length of the input function ðs2 � s1Þ ex-
ceeds the duration ðr1 þ r2Þ.

The piece-wise solution on the identical time intervals

can be expressed as

DðtÞ ¼

0;
F
R

t�s�
1

2r1
expðRtÞ þ expðRs�

1
Þ�expðRtÞ

2Rr1

� �
;

F
R expðRtÞ þ expðRs�

1
Þ�expðRsþ

1
Þ

2Rr1

� �
;

F
R expðRtÞ þ expðRs�

1
Þ�expðRsþ

1
Þ

2Rr1
� t�s�

2

2r2

�
� expðRtÞ � expðRs�

2
Þ�expðRtÞ

2Rr2

�
;

F
R

expðRs�
1
Þ�expðRsþ

1
Þ

2Rr1
� expðRs�

2
Þ�expðRsþ

2
Þ

2Rr2

� �
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

In contrast to the standard model with the boxcar

input function, the difference signal has a continuous

derivative with respect to time. It is easy to verify that

the standard model represents a limit case of Eq. (9) for

r1 ! 0 and r2 ! 0.
2.3. Gaussian dissipation of input function

The obvious disadvantage of the uniform dissipa-

tion is the cumbersome piece-wise character of the

result. The uniform point source dissipation is also

unlikely in a living organism. These drawbacks can be

remedied by assuming that any tag point source dis-
sipates into a shape of a Gaussian normal distribution

with standard deviation r. The sharp wavefront edge

of the input function therefore undergoes Gaussian

smoothing:
HðtÞ �
exp � t2

2r2

� �
ffiffiffiffiffiffi
2p

p
r

¼ 1

2
þ 1ffiffiffi

p
p

Z tffiffi
2

p
r

0

expð�#2Þd#

¼ 1

2
1

�
þ erf

tffiffiffi
2

p
r

� ��
;

where HðtÞ is a Heaviside step function and erfðtÞ is the
error function. A sufficiently long boxcar input can be
treated as an appropriate subtraction of two step func-

tions at times s1 and s2 with independent dissipations of

the leading and trailing edges characterized by standard

deviations r1 and r2, respectively. We thus obtain an

input function

W ðtÞ ¼ a
2

erf
t � s1ffiffiffi
2

p
r1

� ��
� erf

t � s2ffiffiffi
2

p
r2

� ��
: ð10Þ

The leading wavefront of the tagged region arrives with

an average delay s1, while an average delay of the

trailing wavefront is s2.
After substituting DaðtÞ from Eq. (4), the input

function W ðtÞ above can be integrated analytically (see,
e.g., Eq. (7.4.36) on p. 304 in [14]) in Eq. (5) to obtain

the time course of the perfusion signal

DðtÞ ¼ F
2R

½erfðu1Þ
�

� erfðu2Þ� expðRtÞ

� 1

�
þ erf u1

�
� Rr1ffiffiffi

2
p

��
exp R s1

��
þ Rr2

1

2

��

þ 1

�
þ erf u2

�
� Rr2ffiffiffi

2
p

��
exp R s2

��
þ Rr2

2

2

��	
:

ð11Þ

Here we used abbreviations

u1 ¼
t � s1ffiffiffi
2

p
r1

; and u2 ¼
t � s2ffiffiffi
2

p
r2

:

The difference signal and its time derivative are con-

tinuous functions of time. The standard model of Eq. (7)

can again be obtained as a special limit case (r1 ! 0 and

r2 ! 0) of Eq. (11).
3. Results

To demonstrate the influence of model parameters on

the predicted subtraction signal, we calculated DðtÞ us-

ing Eq. (9) (Fig. 1) and Eq. (11) (Fig. 2) for the uniform

and Gaussian dissipation, respectively. The parameters

were chosen to approximate PASL perfusion imaging at
1.5 T (T1 ¼ 0:9 s, T1b ¼ 1:2 s, k ¼ 0:9, f ¼ 0:015 s�1, and

a ¼ 0:9). Fully relaxed magnetization was set to

M0 ¼ 100 to obtain the difference signal as a percentage

of M0. We assumed that r is proportional to the square

root of time, analogously to a diffusion. Dissipation

width r2 was therefore always set to r1
ffiffiffiffiffiffiffiffiffiffiffi
s2=s1

p
to



Fig. 1. Uniform dissipation model. (A) Examples of trapezoid input functions with r1 from 0 (equivalent to a boxcar input) to 0.3 s; s1 ¼ 0:5 s and

s2 ¼ 1:5 s. The trailing wavefront dissipation was set to r2 ¼ r1
ffiffiffiffiffiffiffiffiffiffiffi
s2=s1

p
. (B) Perfusion signal corresponding to the input functions in A. (C) Trapezoid

input functions with varying extent of the tagged region (r1 ¼ 0:2 s, s2 from 1 s to 1). (D) The corresponding perfusion signal curves.

A

B

C

D

Fig. 2. Gaussian dissipation model. All the parameters used to construct curves in (A–D) are identical to those used in the corresponding panels of

Fig. 1.
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Fig. 3. A direct comparison of the three models with no dissipation,

uniform dissipation, and Gaussian dissipation. The parameters were

chosen to resemble PASL perfusion measurement with a standard

transmit/receive head coil at 1.5 T (T1 ¼ 0:9 s, T1b ¼ 1:2 s, k ¼ 0:9,

f ¼ 0:015 s�1, a ¼ 0:9, s1 ¼ 0:5 s, s2 ¼ 1:5 s,r1 ¼ 0:2 s, andr2 ¼ 0:35 s).

Perfusion signal curves in B result from input functions in A.
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account for larger spread of the trailing edge. A notable
exception was the QUIPSS II model, where r1 ¼ r2.

Fig. 1 summarizes the results of simulations with the

trapezoid input function. The left column (A and B)

shows the influence of changing dissipation width r1.
The mean tag arrival (s1) and departure (s2) times are

typical for PASL imaging with a standard head coil.

However, it is clear that any differences at longer times

are eventually lost in T1 relaxation process of the tag.
Compared to a boxcar input function with the same

arrival and departure times, the signal is initially rising

with lower slope and reaches a lower maximum value.

The right column of Fig. 1 (C and D) shows the dra-

matic effect of varying the tagged region extent. For a

very narrow region, the maximum perfusion signal is

shifted to an earlier time and it is much lower than the

optimum signal which would be obtained with wide
tagged region (e.g., with a body coil). Unlike for the

boxcar input function, the difference signal time course is

smooth everywhere, a result of a continuous derivative.

Analogous simulations with Gaussian dissipation are

depicted in the four panels of Fig. 2. The input functions

are smoother than their trapezoidal counterparts and

for higher values of r1, the curves never reach the pla-

teau of W ðtÞ ¼ a before they fall again. The effect of
Gaussian input smoothing on the perfusion signal is

similar to the uniform smoothing but it is larger, clearly

affecting both the initial slope and the maximum value.

The effect on maximum difference signal is as large as

20% compared to the boxcar input, for a modest dissi-

pation value of r1 ¼ 200ms.

The effect of the tagged region width is characterized

in Figs. 2C and D. The behavior is very similar to that
shown in Figs. 1C and D but the perfusion curves are

wider.

All three models with no dissipation, uniform dissi-

pation, and Gaussian dissipation are directly compared

in Fig. 3. The input functions (A) have identical time

characteristics in terms of their mean arrival and de-

parture times and the last two models also in terms of r1
and r2. Yet the perfusion signals (B) differ significantly
among them for almost the entire first 2 s. Any differ-

ences then succumb to a longitudinal relaxation process.

Gaussian dissipation leads to the lowest maximum sig-

nal reached along the lowest initial slope.

The QUIPSS II method [8] was developed to elimi-

nate dependency of the perfusion signal on the arrival

time s1. The tag region is saturated at a fixed time ds
after the initial inversion. It is assumed that the inver-
sion and saturation pulses have identical profiles and

that the saturation is applied before any fresh blood

could traverse the tagged region and escape saturation.

In this case, the W ðtÞ function becomes better defined

than in other PASL methods—it is now symmetrical

(r1 ¼ r2 ¼ r), and the difference between the mean ar-

rival times s2 � s1 ¼ ds is known and fixed. Fig. 4 shows
several time courses of the QUIPSS II perfusion signal

for different arrival times and ds ¼ 0:6 s. If the images

are taken at time t > s1max þ dsþ rmax, the dependency

on s1 and r1 becomes negligible (and would disappear

completely if T1app ¼ T1 ¼ T1b). This advantage is traded
for perfusion signal loss. Randomization of arrival times
makes the QUIPSS II assumptions harder to satisfy.

The saturation pulse may have to be applied earlier due

to dissipation of the distal edge of the tagged region, and

the acquisition has to be further delayed by the maxi-

mum r found in the image.
4. Discussion and conclusions

We have theoretically investigated the effect of arrival

time randomization on the perfusion signal in the PASL



Fig. 4. Gaussian dissipation model for a typical QUIPSS II acquisi-

tion. Maximum s2 is s1max þ ds ¼ 0:8þ 0:6 s. Other parameters are the

same as specified in Fig. 3. The vertical dotted lines mark the minimum

recommended acquisition time for standard model (r ¼ 0 s, left line)

and Gaussian dissipation model (r ¼ 0:2 s, right line). The remaining

differences in the perfusion signal at later times are due to mutually

unequal relaxation times T1app, T1, and T1b.

54 J. Hrabe, D.P. Lewis / Journal of Magnetic Resonance 167 (2004) 49–55
techniques. It was previously reported [12] that input

functions with smoother edge shape than a boxcar may

affect the initial slope of the perfusion signal. We have

demonstrated how this input function smoothing may

occur and that it can affect not only the initial slope but
also the maximum obtainable perfusion signal. The ef-

fect of randomization is particularly large when the

tagged region is narrow (approximating, e.g., the use of

a standard head coil for tag excitation). Employing the

boxcar model in this situation would underestimate the

perfusion.

The model treats the leading and trailing wavefronts

of the tagged blood separately, with their own respective
time shifts and dissipations. An analogy with the diffu-

sion process suggests that if the dissipation is sufficiently

homogeneous in the combined volume of the tagging

and imaging regions, the standard deviations r1 and r2
should satisfy the relationship

r2

r1

¼
ffiffiffiffi
s2
s1

r
:

We used this relationship in all of our simulations, ex-

cept for the QUIPSS II model.

Both the uniform and Gaussian dissipations lead to

qualitatively similar effects in the perfusion signal. Our

first choice, however, is the Gaussian model. There is a

large number of random effects on the arrival times [15].

In larger vessels, viscosity, pulsation and turbulence lead
to dispersion of velocities. As the tagged blood reaches

smaller vessels, total cross-sectional area increases and

the flow slows down (e.g., by a factor of 100). Countless

bifurcations lend the blood supply tree a fractal char-

acter [16]. Velocity magnitude variations are smaller but
directions become highly randomized. An imaging voxel
is typically large (e.g., 125mm3) and is therefore reached

by many different pathways. Although there is currently

no widely accepted statistical description of this complex

process with respect to tag arrival times, a convection-

dispersion equation with a diffusion-like dissipation

term has been applied to the blood circulation problem

and experimentally validated [17]. The Gaussian dissi-

pation therefore likely represents a reasonable first ap-
proximation until more definitive experimental evidence

is established.

While we have discussed only PASL perfusion, it is

clear that similar dissipation of arrival times influences

the Continuous Arterial Spin Labeling (CASL) methods

as well. Consider the steady state situation after long

continuous inversion tagging. Eq. (3) will lose the time

derivative and its right-hand side Daðt ! 1Þ will have
to be obtained by averaging over all possible arrival

times. For Gaussian distribution with mean arrival time

s and standard deviation r we get

Dðt ! 1Þ ¼ T1appDaðt ! 1Þ

¼ T1app2aM0

f
k

1ffiffiffiffiffiffi
2p

p
r

Z 1

�1
exp

 
� t0

T1b
� ðt0 � sÞ2

2r2

!
dt0

¼ T1app2aM0

f
k
exp

�
� s
T1b

�
exp

r2

2T 2
1b

� �
: ð12Þ

This solution differs from the standard CASLmodel with

uniform arrival time (Eq. (5) in [12]) by a factor of

expðr2=ð2T 2
1bÞÞ > 1. The perfusion flow is therefore

overestimated whenever the dissipation of arrival times is

present. E.g., for T1b ¼ 1:2 s andr ¼ 0:3, 0.6, and 0.9 s this
factor is 1.03, 1.13, and 1.32, respectively. For large dis-

tances between the tagging plane and the image plane, the

randomization of the arrival times can thus become a

significant factor for the CASL methods as well.

The perfusion model proposed here is an improve-

ment of the standard boxcar model which takes into
account some effects that have been neglected so far.

These include the statistical distribution of the arterial

blood arrival times, imperfect edges of the tagging RF

profiles, and the effect of limited spatial extent of the

transmit coil. Ignoring these effects can in some cases

lead to inaccurate perfusion estimates. The analytical

solutions provided here make it easy to estimate their

influence under various circumstances.
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